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Abstract. The critical properties of the axial next-nearest-neighbour k ing  ( A N N N I )  model 
are investigated by using the mean-field renormalisation group approach. Linear and 
double chain clusters lying along the axial direction are considered. Phase diagrams for 
the model in two and three dimensions and estimates of thermal exponents are obtained. 

1. Introduction 

In recent years, considerable attention has been focused on the study of the axial 
next-nearest-neighbour Ising ( A N N N I )  model. Despite being perhaps one of the 
simplest extensions of the Ising model with competing interactions, it displays a very 
rich critical behaviour. The corresponding Hamiltonian model, with isotropic ferro- 
magnetic nearest-neighbour interactions J ,  > 0, can be defined as 

H = - $  ( J I S I , j , k S i * l , j * l . k * l  - J 2 S i , j , k S i * 2 , j . k )  S i , j , k  = * 1 (1) 
w , k  

where J ,  > 0 is a competing antiferromagnetic interaction between next-nearest-neigh- 
bour spins along the i direction. In one dimension, model (1) was exactly solved by 
Stephenson (1970). In higher dimensions, it has been shown that the system exhibits 
paramagnetic, ferromagnetic and modulated phases, as well as a Lifshitz point on the 
ferromagnetic side at non-zero temperature for the three-dimensional model. 

In three dimensions, the high-temperature region of the phase diagram and the 
vicinity of the Lifshitz point ( LP) have been investigated by renormalisation group 
methods (Hornreich et a1 1975, Hornreich 1980), high-temperature series expansions 
(Redner and Stanley 1977, Oitmaa 1985) and Monte Carlo simulations (Selke 1978). 
The LP has been located at an absolute temperature T # 0. In the low-temperature 
region, the model has been studied by low-temperature series expansions (Fisher and 
Selke 1980), Monte Carlo simulations (Selke and Fisher 1979), effective pair, triplet, 
etc, wall-wall interactions (Szpilka and Fisher 1986) and various mean-field theories 
(Bak and von Boem 1980, Yokoi et al 1981, Bak 1982, Selke and Duxbury 1984). It 
has been shown that the ground state of the model is ferromagnetic for 25, < J l  , and 
for 2J2>  J ,  it exhibits a periodically extended sequence of two-up and two-down 
ferromagnetic planes of spins lying along the i direction. The point T=O, 2J2=J ,  
is a multiphase point with an infinite ground-state degeneracy. 

In two dimensions, the calculations performed on the A N N N I  model include Monte 
Carlo simulations (Selke and Fisher 1980) and high-temperature expansions (Rujan 

0305-4470/87/ 144967 + 08$02.50 0 1987 IOP Publishing Ltd 4967 



4968 E C Valadares and J A Plascak 

1981), which localise a LP on the ferromagnetic side of the phase diagram at a non-zero 
temperature. According to the current consensus, however, a disordered phase is stable 
down to T = 0 with no LP at finite temperature for J 2 / J ,  < 0.5. This point of view is 
supported, among other works, by exact solutions (on a special line) of an equivalent 
Hamiltonian (Peschel and Emery 1981), free fermion approximations (Villain and Bak 
1981), Monte Carlo simulations with a careful finite-size analysis (Selke 1981) and a 
finite-size scaling treatment (Beale et a1 1985). More recently, a calculation within the 
framework of the cluster variation method (Fine1 and de Fontaine 1986) indicated the 
absence of a LP  at a finite temperature for J 2 / J ,  ~ 0 . 5 .  

In the present work, we have studied the A N N N I  model as given by the Hamiltonian 
(1) within the mean-field renormalisation group ( MFRG) framework (Indekeu er a1 
1982). According to this approach, the magnetisations per spin for two distinct clusters 
surrounded by symmetry breaking fields are compared assuming these fields scale in 
the same way as the magnetisations themselves. This method allows one to obtain a 
recursion relation among the parameters of the system and thereby the critical points 
of the model. In addition, it allows one to obtain estimates for thermal exponents by 
means of a standard procedure. The clusters we have considered are the linear chain 
(cluster I )  and the double chain (cluster 11) as indicated in figure 1. The expressions 
of the magnetisations for both cases are trivially connected to their respective suscep- 
tibilities which, in the present case, can be evaluated through a simple extension of 
the transfer matrix procedure used for calculating spin correlation functions of the 
Ising model on the linear chain (Marsh 1966). 
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Figure 1. Schematic representation of the linear chain cluster ( I )  and the double chain 
cluster (11) in two dimensions. The nearest-neighbour couplings are ferromagnetic and 
the next-nearest-neighbour couplings are antiferromagnetic. The surrounding spins in each 
cluster are represented by open circles. 
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This paper is organised as follows. We first compute the magnetisations per spin 
for clusters I and I1 and present the corresponding mean-field results. The phase 
diagram obtained from the MFRG method is discussed in 0 3, and we close the paper 
with some final comments in 0 4. 

2. Magnetisations and mean-field approximations 

The first step of our calculation consists in obtaining the magnetisation per spin m L  
of the cluster I in the presence of a local field hj acting on each spin Si of the linear 
chain. As required by the MFRG method (Indekeu et a1 1982), these local fields are 
given by 

h j = ( z - 2)5 ,  b j ( 2 )  

where z = 2d is the lattice coordination number and bl denote the fixed magnetisations 
of the surrounding spins of cluster I .  As bj<< 1, and consequently hj<c 1 ,  one can use 
the linear response theory to obtain 

mL(K:, K ; ,  q ‘ ) = X L ( K ’ , ,  K ; ,  q ’ ) ( z - 2 ) K : b ; ,  (3 1 
where K = ,BJ1 and K; = pJ2  with ,B = 1 /  kBT and q’ is the wavevector along the axial 
direction. xL( K i ,  K 4,q’) is the q’-dependent susceptibility per spin of the linear chain. 
At this point, some information about the criticality of the ( d  > 1)-dimensional model 
can be extracted via mean-field methods. The q’-dependent susceptibility in the 
paramagnetic phase for the d > 1 system can be written as (Scalapino et a1 1975) 

The transition temperature and the corresponding periodicity wavenumber are then 
obtained by the values for which the susceptibility ( 4 )  first diverges as the temperature 
is lowered. In this sense, the interactions along the axial direction are exactly taken 
into account while the perpendicular interactions are treated in a mean-field way. Such 
an analysis has been previously done by Pires et a1 (1982).  In their work, the linear 
chain susceptibility was calculated by using the exact results for the correlation 
functions obtained by Stephenson (1970).  They have shown that the results obtained 
from (4) improve considerably on those of the usual mean-field theories. This approach, 
however, can just pick up the second-order transition line from the paramagnetic- 
ferromagnetic phases and paramagnetic-modulated phases. No information about the 
low-temperature modulated phases can be obtained from equation ( 4 ) .  

The next step consists in obtaining the magnetisation per spin for cluster 11. The 
local field acting on each pair of spins of the double chain is now given by 

( 5 )  
where bj are the fixed magnetisations of the surrounding spins of cluster 11. For bj << 1 
one can write 

( 6 )  
where the quantities appearing in ( 6 )  are analogous to those defined for cluster I .  The 
calculation of the q-dependent double chain susceptibility xD(K,, K,, q )  follows from 
an extension of Marsh’s prescription (March 1966) for evaluating spin correlation 

hi = ( z - 3 ) 5 ,  bj 

m ~ ( K i ,  Kz,  q ) = ~ d K i ,  K2, q ) ( z - 3 ) K i b q  
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functions. One first defines four appropriate 16 x 16 diagonal 'spin matrices' related 
to the double chain transfer matrix, quite analogous to the 2 x 2  spin matrix of the 
Ising linear chain of spins. The procedure is then essentially the same as that used 
for calculating spin-pair correlation functions through a product of matrices. Although 
straightforward, the results are rather too lengthy to reproduce here. 

At this stage, it is worth performing a mean-field calculation similar to that done 
previously for cluster I .  The q-dependent susceptibility in the paramagnetic phase is 
now given by 

As before, the critical temperature and the critical axial wavevector are determined by 
the values for which the denominator of (7) vanishes (Pires et a1 1982). The critical 
line separating the paramagnetic phase as a function of the ratio J2/  J ,  obtained from 
the present double chain (mean-field) approximation (referred to as DCA) is shown in 
figure 2 together with those previously obtained by the linear chain (mean-field) 
approximation (Pires et a1 1982) (referred to as LCA) and the usual mean-field ( M F )  

approximation for the three-dimensional model. A noticeable improvement is achieved 
by increasing the width of the clusters. The critical axial wavevector qc ,  as a function 
of J 2 / J , ,  along the paramagnetic-modulated transition line is zero (at the LP) and 
approaches the value 57/2 (as J2/Jl +-CO) for all approximations. The location of the 
LP, however, is almost coincident with the M F  ratio J 2 /  J ,  = 0.25. Again, no information 
about the modulated low-temperature region of the phase diagram can be obtained 
from equation (7). Moreover, all critical exponents remain exactly the same as those 
of the usual M F  theory. 

In two dimensions, similar results to those shown in figure 2 are obtained in LCA 
and DCA approximations. The critical behaviour thus obtained for the A N N N I  model 
in both two and three dimensions is a signature of the mean-field character of the 
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Figure 2. Paramagnetic critical line for the three-dimensional modei as a function of J 2 / J ,  
according to several approximations. The dots on the curves represent the Lifshitz point. 
The results of a Monte Carlo simulation are represented by the error bars and of high- 
temperature series expansions by the broken curve. 
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approximations employed, which do not distinguish, in a qualitative way, the 
dimensionality of the system for d > 1. 

3. Mean-field renormalisation group approach 

The magnetisations m L  and M D  of the previous section can be combined under 
renormalisation group ideas by imposing a scaling relation of the form mL = @nD and 
assuming a similar scaling relation between bk and b,, i.e. bb. = tb,, yielding 

which is independent of the scaling factor 6. Equation (8) is viewed as a renormalisation 
recursion relation among the parameters K I ,  K ; ,  q’ and K ,  , K 2 ,  q. It is clear that 
one cannot determine the complete renormalisation flow diagram in the parameter 
space of the Hamiltonian (1) from this equation alone. In fact, this is a general trend 
of the MFRG when the Hamiltonian under study has more than one parameter. However, 
as has been done in the study of other lattice spin systems (Droz et al 1982, Plascak 
1984), one can look first at the fixed-point solutions associated with equation (8), namely 

From the above relation one can obtain the critical surface of model (1) by 
computing ( K  :)-I = kB T,/ J ,  as a function of the ratio J2/  J1 related to each mode q. 
For the three-dimensional model, we can obtain with equation (9) a paramagnetic 
critical line which is shown in figure 2 together with the previous mean-field results 
as well as those of high-temperature series expansions (Oitmaa 1985) and a Monte 
Carlo coarse-graining calculation (Kaski and Selke 1985) for comparison. One notices 
a good agreement of the present MFRG result on this phase boundary with the curves 
given by more accurate methods. The LP is located at the ratio J2/  J ,  = 0.255 which 
should be compared to the value J 2 / J ,  = 0.265 obtained through the Monte Carlo 
calculation and to J 2 /  J, = 0.27 obtained by high-temperature series expansions. It 
should be stressed that the present choice of clusters does not allow one to capture 
low-temperature features of the phase diagram, since none of them carry the cubic 
symmetry of the lattice. 

On the other hand, for the two-dimensional model, we have obtained through 
equation (9) the phase diagram shown in figure 3, which displays some curves for 
q Z 0  in the low-temperature region. This result is certainly correlated to the two- 
dimensional character of cluster 11. Although a detailed description of the phase 
diagram cannot be obtained by the present approach, the lines separating the modulated 
phases for q =  ~ / 2  and q=O are within the limits given by the finite-size scaling 
procedure of Beale et a1 (1985), which also employs infinite strips with finite widths. 
Nevertheless, it is not surprising that in the present treatment a LP at a non-zero 
temperature on the ferromagnetic side is obtained, as in previous mean-field calcula- 
tions, since the MFRG still carries a mean-field character, which is absent in the 
phenomenological finite-size scaling procedure employed by Beale et a1 (1985). Fur- 
thermore, critical thermal exponents for the two-dimensional case can be estimated 
from equation (8) by computing 
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Figure 3. Phase diagram of the two-dimensional model obtained through the MFRG.  The 
dot represents the Lifshitz point (artificially generated by the method). Pis the paramagnetic 
phase, F the ferromagnetic phase and M the modulated phase. 

where the derivative is taken at the fixed points given by equation (9), and I = 2 is the 
rescaling factor related to the present clusters for the two-dimensional model (Plascak 
and Silva 1986). The critical exponents vT are displayed in figure 4. Although a 
noticeable crossover is observed at the multiphase point J z / J ,  = 0.5 for the line q = ~ / 2 ,  
one can also observe a pathological behaviour of vT along the paramagnetic line. This 
behaviour is intrinsically related to the mean-field character of the method which, as 
has been mentioned above, is more accurate in three dimensions. A calculation of the 
thermal exponent would further require the knowledge of the scaling factor I which 
is by no means obvious in this case. However, by merely evaluating the derivative in 
equation (10) at the fixed points it is possible to get some evidence of a crossover near 
the LP which is in agreement with the results of Kaski and  Selke (1985). 

I I  I 

0 0.5 1.0 
J ,  I J ,  

Figure 4. Critical thermal exponent as a function of the ratio J 2 /  J ,  for the two-dimensional 
model. The full  curve refers to the paramagnetic line (quite probably an artefact of the 
method). The broken curve refers to q = ~ / 2  (see figure 3 ) .  
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4. Final comments 

Although the present approach does not yield the expected phase diagram for the 
two-dimensional A N N N I  model, especially its low-temperature complex behaviour for 
d > 1, it has been shown to be a useful tool in obtaining good quantitative estimates 
for some phase boundaries as compared to the usual mean-field theories. In addition, 
it allows one to estimate critical exponents for the two-dimensional model by means 
of a standard procedure. The present approach can also be easily extended to treat 
the more general three-dimensional A N N N I  model in which one has a different exchange 
coupling J,, in planes perpendicular to the axial direction. In this case, differing from 
the usual mean-field theories, the location of the Lifshitz point depends on the ratio 
J o l  J ,  . 

It should be mentioned that wider clusters could also be considered. In comparison 
to other methods, in which only the largest and second largest eigenvalues are required 
(Beale et a1 1985), in the present approach it is necessary to evaluate both all eigenvalues 
and all eigenvectors of the related transfer matrix. Most importantly, the magnetisation 
per spin for clusters wider than the double chain is no longer connected to the usual 
susceptibilities, thus not enabling us to use the procedure recently proposed by Pesh 
and Kroemer (1985) for calculating X , ~ ( ( I )  for N 2 3. Moreover, a very slow conver- 
gence to the exact results should be expected as the width of the infinite strips is made 
larger, as recently verified for the triple chain in the Ising limit (Plascak and Silva 
1986). We therefore conclude that the present choice of clusters represents the most 
feasible one within a MFRG calculation on the A N N N I  model. 
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